important as a residual phase for water-saturated melting at lower pressures but more important at higher pressures (fig. 1). These relationships become important in seeking to interpret very magnesian dunites, wehrlites and harzburgites of the alpine-type ultramafic complexes as possible residues and accumulates from either island arc or mid-oceanic ridge magma genesis.

5.1.3. 10 kb, 1050°C

Olivine, orthopyroxene, clinopyroxene and liquid are primary phases at these run conditions. Analysis of the bulk composition shows that there has been no detectable Fe-loss (table 4). The increasing degree of crystallization of the charge is accompanied by decreasing forsterite content of olivine (Fo_{88.5}). The analyses of pyroxene 'pairs' at 10 kb 1020°C TABLE 4 and 1000°C, and at 20 kb 1050°C, consistently yielded clinopyroxene with slightly higher Mg-value and slightly higher TiO₂ content than coexisting orthopyroxene. It appears probable that the analysis of clinopyroxene in the 10 kb 1050°C run includes a small proportion of quench clinopyroxene outgrowth giving slightly low Mg-value and high Al₂O₃ and TiO₂ contents (tables 4, 5, 6, 9).

The amphibole composition is that of a quench phase, on the basis of the Mg-value (too low for equilibrium with olivine or pyroxenes but probably correct for equilibrium with the glass composition), very high TiO_2 and low CaO contents and very high SiO_2 contents. In these respects the amphiboles of both the 1050°C and 1020°C runs are similar to one another and markedly different from the subsolidus amphibole at 970°C (table 7) or the amphibole (considered to be an equilibrium phase) at 1000°C (table 6). Because of the presence of quench amphibole, the Mg-value relationships between glass and crystals, and the evidence deduced

	Olivine	Orthopyroxene	Clinopyroxene	Quench amphibole	Glass
SiO2	41.2	56.6	54.0	53.1	65.0
TiO ₂	_	0.2	0.8	3.8	0.9
Al ₂ O ₃		1.5	3.9	13.3	21.0
FeO	11.1	7.6	4.0	6.4	2.7
MnO			-	-	-
MgO	47.5	32.4	16.3	14.8	1.5
CaO	0.15	1.3	20.1	5.4	8.7
Na ₂ O	-	<u> </u>	0.3	> 0.9	> 0.8
K20		-	-	0.6	0.6
Cr_2O_3	_	0.6	1.0		_
"H ₂ O"				(2%)	(~13.5)
$\frac{100 \text{ Mg}}{\text{Mg} + \Sigma \text{Fe}}$	88.5	88.5	88.0	80.5	51

Run conditions: 10 kb, 1050° C, 4 hr, Ag₇₅Pd₂₅ capsule. 100 Mg/(Mg + Σ Fe) of sample after run: 85.2. TABLE 5

INDEL 5						
	Olivine	Orthopyroxene	Clinopyroxene	Quench amphibole	Glass 1*	Glass 2*
SiO ₂	40.5	55.1	53.7	53.5	56.2	64.0
TiO ₂		0.2	0.6	2.1	3.8	0.7
Al_2O_3	-	1.1	2.0	11.0	17.7	21.0
FeO	12.3	7.6	3.8	6.4	5.9	2.4
MnO	-	_	_	—		-
MgO	46.8	33.8	17.7	15.3	7.4	2.5
CaO	-	1.3	21.2	8.8	6.4	8.3
Na ₂ O	_		0.2	0.3	> 1.1	> 0.7
K ₂ O		-	—	0.3	0.7	0.6
Cr_2O_3	-	0.6	0.9	0.3	0.7	-
$\frac{100 \text{ Mg}}{\text{Mg} + \Sigma \text{Fe}}$	87.2	88.8	89.3	81	69	65

Run conditions: 10 kb, 1020° C, 4 hr, $Ag_{75}Pd_{25}$ capsule. 100 Mg/(Mg + Σ Fe) of sample after run: 85.3.

* Stationary electron beam giving low Na2O value.

D.H. Green, Experimental melting studies

T		DI	T.	
	А	кі	. P.	4

	Olivine	Orthopyroxene	Clinopyroxene	Amphibole	Glass
SiO ₂	40.5	54.5	51.5	44.6	Not
TiO ₂	이 집에 들어 있는 것	0.4	-1.0	2.5	analyzable
Al ₂ O ₃		4.1	4.6	11.0	
FeO	13.3	8.4	4.2	6.0	
MnO	(Provide gas Cherkel)	$C_{1} = C_{1} P_{1} P_{2} + C_{2} P_{1} P_{2}$		0.1	
MgO	46.2	30.8	17.8	19.9	
CaO	0.1	1.1	19.5	10.9	
Na ₂ O	Sale search State	영양 전 그는 이 가슴이 있는 것이.	0.6	1.9	
K ₂ O		第四日に主要ななどの目的はない	0.1	0.3	
Cr_2O_3	nu≜ ne ⇒ 014 -24	0.8	0.7	0.9	
$\frac{100 \text{ Mg}}{\text{Mg} + \text{Fe}}$	85.3	86.9	88.4	85.4	

Run conditions: 10 kb, 1000°C, 6 hr, Ag₇₅Pd₂₅ capsule.

in this and previous runs for outgrowth of quench clinopyroxene and olivine respectively, the highly siliceous glass is considered to be a non-equilibrium quench product and to bear no relation to the composition of an equilibrium melt at 10 kb 1050° C in water-saturated pyrolite composition.

It is not possible to deduce the composition of the equilibrium melt at 10 kb 1050°C without rather arbitrary assumptions about the degree of crystallization and the proportions of olivine, orthopyroxene and clinopyroxene. The decrease in Mg-value of crystalline phases between 1100°C and 1050°C implies a decrease in the amount of liquid present and the low Na and K values of the pyroxenes imply that these elements are concentrated in the liquid phase. These factors, and the increased proportion of pyroxenes (with 54–57% SiO₂) to olivine, all argue that the equilibrium liquid, with 100 Mg/(Mg + Fe⁺⁺) = 69–70 will have SiO₂ < 56% and high alkali contents.

5.1.4.10 kb, 1020°C

This run is similar to the 1050° C run in both the nature and compositions of its phases. Orthopyroxene $(Ca_{2.5}Mg_{86.5}Fe_{11})$ appears to be slightly high in CaO but the coexisting clinopyroxene $(Ca_{43.5}Mg_{50.5}Fe_6)$ has low TiO₂, Al₂O₃ and very low Na₂O contents, and the composition is considered to be free of quench contamination. Both the amphibole and glass compositions show non-equilibrium characteristics as in the 1050°C runs, and the microprobe data, while confirming the presence of amphibole at 1020°C as observed optically [12], demonstrate that it is not an equilibrium phase

at 1020°C. The glass appears to be more variable in composition in this run than in the higher temperature runs.

5.1.5. 10 kb, 1000°C

This experimental run contains olivine, orthopyroxene ($Ca_{2.2}Mg_{84.8}Fe_{13.0}$), clinopyroxene ($Ca_{41}Mg_{52}Fe_7$) and amphibole, all as major constituents and all with Mg-values consistent with the four phases being primary and in equilibrium with each other. This con-

TA	RI	F	7
10	LD1		1

	Orhopyroxene *	Amphibole *	Orthopyroxene	
	1	2	3	
SiO ₂	53.9	44.0	54.0	
TiO ₂	0.4	2.1	0.2	
Al ₂ O ₃	3.7	12.0	3.3	
FeO	8.9	5.6	8.9	
MnO	0.2	Statistics and	-	
MgO	30.5	18.1	31.2	
CaO	<1.1	11.3	0.8	
Na ₂ O	-	1.8	1974 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 -	
K ₂ O		0.5	-	
Cr_2O_3	0.6	2.6	0.7	
100 Mg	86.1	85.3	86.4	
Mg + Fe				

Columns 1,2 – run conditions: 10 kb,970 $^{\circ}$ C, 5.5 hr, Ag₇₅Pd₂₅ capsule.

Column 3 – run conditions: 10 kb, 900° C, 6 hr, $Ag_{75}Pd_{25}$ capsule.

* The fine grain-size of the run product did not allow complete resolution of olivine (≥ Fo_{85.6}) and clinopyroxene (≥ 18.8% CaO) from surrounding crystals.

46